

AFRL-RI-RS-TR-2009-257
Final Technical Report
November 2009

OPEN COMPONENT PORTABILITY
INFRASTRUCTURE (OPENCPI)

Mercury Federal Systems, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-257 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
GEORGE RAMSEYER EDWARD J. JONES, Deputy Chief
Work Unit Manager Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

NOVEMBER 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

January 2009 – July 2009
4. TITLE AND SUBTITLE

OPEN COMPONENT PORTABILITY INFRASTRUCTURE (OPENCPI)

5a. CONTRACT NUMBER
FA8750-09-C-0030

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63781D

6. AUTHOR(S)

John M. Scott, III

5d. PROJECT NUMBER
SSTT

5e. TASK NUMBER
HG

5f. WORK UNIT NUMBER
09

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Mercury Federal Systems, Inc.
1901 South Bell Street, Suite 402
Arlington, VA 22202-4511

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-257

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2009-4668 Date Cleared: 12-Nov-09

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report presents the steps taken to research and convert the previously closed source software Component Portability
Infrastructure (CPI) into Open Source Software (OSS) by releasing OpenCPI under an open source software copyright license
agreement. By making the software OSS, the technology is suitable for a wider community, in part because the application and
platform suitability has been previously verified through studies and reference applications. This report details research into:
Intellectual Property (IP) issues and which OSS license to use, International Traffic in Arms Regulations (ITAR), classification
issues, and the OSS business model for CPI. The intent and end goal is an open technology stack free of IP encumbrances and
proprietary technologies. As a result of this research, CPI has been converted into OpenCPI and released under the OSS Lesser-GPL
(General Public License), which is also called the GNU Lesser General Public License.

15. SUBJECT TERMS
Open Source Software, real-time, LGPL, military, copyright, intellectual property, FPGA, DSP, GPU, GPGPU, code portability,
Component Portability Infrastructure, CPI, Open Component Portability Infrastructure, OpenCPI

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

48

19a. NAME OF RESPONSIBLE PERSON
George O. Ramseyer

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 i

TABLE OF CONTENTS

1.0 SUMMARY 1

2.0 INTRODUCTION 3

2.1 WHAT IS CPI? 3
2.2 OPENCPI DESCRIPTION 4

3.0 METHODS, ASSUMPTIONS & PROCEDURES 8

3.1 OPENCPI RESEARCH AGENDA 8
3.2 OSS COMMUNITY RESEARCH AGENDA 9

4.0 RESULTS & DISCUSSION 10

4.1 GOVERNANCE & OSS LICENSING FOR OPENCPI 10
4.1.1 OPEN SOURCE SOFTWARE LICENSING 10
4.1.2 OSS LICENSING FOR OPENCPI 17
4.1.3 OSS GOVERNANCE 23
4.2 INTERNATIONAL TRAFFIC IN ARMS REGULATIONS (ITAR) 23
4.3 CLASSIFIED ISSUES 25
4.4 BEST PRACTICES OF OTHER EXISTING OSS COMMUNITIES 25
4.4.1 FINDABILTY 26
4.4.2 OPENCPI COMMUNITY RESOURCES 26

5.0 CONCLUSIONS 29

5.1 OPENCPI BUSINESS MODEL 29
5.1.1 OTHER DELIVERABLES 29
5.2 LOWER BARRIERS TO ENTRY 29
5.3 ENGAGE THE ACADEMIC & RESEARCH COMMUNITY 30
5.4 ENGAGE DEFENSE & INDUSTRY 30
5.5 ADD FEATURES AND APPLICATIONS 30

6.0 REFERENCES 31

7.0 LIST OF ABBRVIATIONS AND ACRONYMS 32

APPENDIX A: ADDITIONAL REFERENCES 34

APPENDIX B: MERCURY CPI ITAR REPORT 36

APPENDIX C: CPI DATASHEET 40

APPENDIX D: OPENCPI HARDWARE BILL OF MATERIALS 42

 ii

LIST OF FIGURES
Figure 1: CPI Description .. 4
Figure 2: CPI Data Flow Model ... 5
Figure 3: OSS Licenses Interaction8 .. 15
Figure 4: CPI Export Control Summary ... 24
Figure 5: OSS and Classified Settings .. 25
Figure 6: OpenCPI Logo .. 26
Figure 7: OpenCPI Website ... 27
Figure 8: Example of OpenCPI Wiki .. 27
Figure 9: OpenCPI Software Source Code Website... 28

LIST OF TABLES

Table 1: Software Licenses Combinations9 .. 17

 1

1.0 SUMMARY
This report details the steps taken by Mercury Federal Systems, Inc. (MercFed, website:

www.mercfed.com) of converting its previously closed source software Component Portability
Infrastructure (CPI) into Open Source Software (OSS), and its release under an open source
software copyright license agreement. The application and platform suitability of this
technology was verified through these studies and reference applications, and has resulted in the
conclusion that it is suitable for a wider community. This effort focused upon the types of OSS
licenses available, International Traffic in Arms Regulations (ITAR), classification issues, and
the OSS business model for CPI.

Defense software is an instantiation of knowledge about a military capability, and this
requires safeguards. However, hiding this knowledge behind Intellectual Property (IP) and other
restrictions inadvertently ensures that the Department of Defense (DoD) and Air Force are less
likely to reuse this existing defense software. This results in similar software being redeveloped
and tested at government expense since the existing software is either not known to exist, or is
protected by stringent IP or other restrictions. Additionally, this impairs the rapid development of
new capabilities in an agile fashion.

 IP rights are rarely being leveraged for the military’s specialized needs. Since both the
software and the hardware that the software is executed on are evolving so rapidly, the
knowledge of defense software needs to be shared as widely as possible within the responsible
community of military, industry and academia. However, at the same time, proper restrictions
are required for that responsible community. The lack of an easily understood framework around
exercising software IP in acquisitions leads to rising costs, slower innovation, and less agility.

Open Component Portability Infrastructure (OpenCPI) is used in the development of real-
time signal processing for embedded, heterogeneous systems for communications, as for
example xxxINT (Signals, Communications, Electronics, etc. - Intelligence) and Counter
Improvised Explosive Devices (CIED) in defense Intelligence, Surveillance and Reconnaissance
(ISR) systems. The intent and end goal of this effort is to have an open software technology free
of IP encumbrance and proprietary uncertainty. The result of this research presented here is that
the best pathway has been identified for CPI to be converted into OpenCPI and released under
the OSS Lesser-GPL (General Public License, also called the GNU Lesser General Public
License) to the responsible defense community.

Previously CPI was targeted and validated in selected domains, but its applicability across a
wider scope of multi-processing technologies and application areas has only been asserted based
on extrapolation. Furthermore, the degree of openness for a wide array of platforms, supportable
by various organizations (proprietary contractors, government programs, commercial-off-the-
shelf (COTS) providers), has only to be “designed in”, and not “validated in practice”.

http://www.mercfed.com

 2

This effort targeted high priority candidates in three categories for prototyping and
assessment. A web based community framework was populated, and the technical and
community issues occurred by CPI as it was transitioned to open source software (OpenCPI)
were documented. Issues that were addressed included design artifacts, testing suites, software
developer kit, IP regime and repository issues, code governance, business model and community
design. Building the community around an open source software project will take time, so here
we focused on gathering like-minded individuals who have the problem sets of real-time and
embedded software.

One of the best ways to grow and maintain a healthy software baseline is to ensure there are
revenue opportunities available. The most successful company that has been able to monetize
open source software is RedHat with its two main product lines: RedHat Linux and JBoss.
RedHat provides a subscription service to both of these products that includes help line support,
rapid updates of bug and new features, and tool sets to help manage the product lines internal to
a customer. Sun Microsystems also sells a subscription support service for all of its associated
open source software products such as OpenSolaris and Java. There are a number of different
business models, listed here in order of lower to higher value: Selling installation with service
and support with the software, versioning the software, free versions as an entry-level offering
and other, more advanced versions as value-added offerings, integrating the software with other
parts of the customers information technology infrastructure, and lastly providing proprietary
complements to open source software.

To broaden the community, the barrier to entry to using OpenCPI must be lowered. This
means simplifying the installation and use process of OpenCPI. A hardware bill of materials was
created for download on www.OpenCPI.org to illustrate a simplified example of what an
OpenCPI system would look like. Developer and build notes about the sample systems were
posted. OpenCPI needs to have multiple communication channels, including a blog, wiki, email
lists, a twitter feed and eventually an always on IRC (internet chat relay) chat channel so that
developers and users feel they always have 24/7 distributed support.

Most open source software projects have seen great adoption by users in the academic and
research communities, since the technologies are so accessible to use and extend. OpenCPI has
reached out to the academic community and is slowly gaining interest and traction. A key future
feature would be to fund academic research and development projects to show how OpenCPI can
be a key technology enabler. The community that will have the most to gain from OpenCPI
across a number of application areas is the military, so it is vital that MercFed engages with as
many current and potential military users of OpenCPI as possible.

http://www.OpenCPI.org

 3

2.0 INTRODUCTION
It is the intent of this report to provide guidance on how to convert closed and proprietary

software into open source software, and is focused primarily on those tools needed by the US
military. This report is provided for information only, and while summarizing legal advice and
guidance, no one who contributed to this report is a lawyer. Please consult proper legal counsel
as required when releasing software source code.

Section 2 is the Introduction, which describes OpenCPI. Section 3, Methods, Assumptions &
Procedures, describes the process we went through to complete this research. Section 4, Results
& Discussion, presents the results of this research and details potential issues to be avoided when
converting software to open source. Section 5, Conclusions, lists conclusions of this research.
The appendices (A-D) provide additional detail on references used, software descriptions, an
export control review and hardware bill of materials, respectively.

2.1 What is CPI?
The Component Portability Infrastructure (CPI) is an innovative middleware solution that

simplifies the programming of heterogeneous processing environments consisting of field-
programmable gate arrays (FPGAs), general-purpose processors (GPPs), digital signal
processors (DSPs), and high-speed switch fabrics. OpenCPI greatly improves code portability,
interoperability, and performance in FPGA and DSP-based environments by providing well-
defined waveform component APIs with a set of infrastructure building blocks that act as a
hardware abstraction layer (HAL).

Today's myriad communications standards and rapidly evolving new-generation
waveforms have created a need to build communications systems that are ready to accept any
present or future waveform. Waveform-Ready™ processing platforms combine the latest
processor, transceiver, and interconnect technologies with the CPI to help customers meet this
challenge. Building on the concepts introduced by the U.S. Government’s Software
Communications Architecture (SCA) standard, CPI extends component-based architectures into
FPGAs and DSPs to decrease development costs and time to market through code portability,
reuse, and ease of integration. CPI has over 30 man-years of development and is considered a
military Technology Readiness Level (TRL) of 6.1

CPI is used in real-time signal processing for embedded, heterogeneous systems for
communications, xxxINT (Signals, Communications, Electronics, etc. - Intelligence) and CIED
(Counter Improvised Explosive Devices) in defense intelligence, surveillance and reconnaissance
(ISR) systems. While CPI has been targeted and validated in certain domains, its applicability
across a wider scope of multi-processing technologies and application areas has only been
asserted based on extrapolation. Furthermore, the degree of openness for a wide array of
platforms, supportable by various organizations (proprietary contractors, government programs,
COTS providers) has only to be “designed in”, and not “validated in practice.”

 4

2.2 OpenCPI Description
CPI is a real-time embedded (RTE) middleware solution that simplifies the programming of

heterogeneous processing applications requiring a mix of field-programmable gate arrays
(FPGAs), general-purpose processors (GPPs), digital signal processors (DSPs), and high-speed
switch fabrics. The “mix” can be over a lifecycle (technology insertion), or within a single
implementation. CPI improves code portability, interoperability, and performance in FPGA and
DSP-based environments by providing well-defined waveform component Application
Programming Interfaces (APIs) with a set of infrastructure blocks that act as a Hardware
Abstraction Layer (HAL). CPI is also appropriate for the incorporation of GPU and multicore
technologies. CPI is uniquely positioned to meet the goals of the Software Systems Stockroom
(S3) since in some sense component-based systems are computer-science's answer to dealing
with “knowledge capture" and the lock-up of Intellectual Property (IP). All interfaces are openly
published and non-proprietary, using an appropriate mix of industry and government
specifications.

To overcome the challenges of code portability in FPGA environments, CPI provides a pre-
validated set of building blocks (Figure 1) to interface the FPGA waveform applications with
high-performance switch fabrics, onboard memory, system command and control, and wideband
Input/Output (I/O). CPI's non-proprietary interfaces act as an abstraction layer to increase the
portability of FPGA applications. A verification suite is also included to facilitate debugging and
reduce development time.

Figure 1: CPI Description

At the highest level, the CPI vision allows users to outsource the technology transition
management job to others. Using the CPI interfaces, developers can protect their application
development investment by cost-effectively moving their applications to new generations of
systems using the latest technologies. CPI is essentially a kit of necessary pieces to create an
application platform for component-based applications based on the SCA model extended to a
heterogeneous mix of computing, interconnect and I/O resources. When CPI is adapted to, and
installed on a platform, that platform is said to be “waveform-ready”.

 5

While the SCA defines the operating environment and APIs for C++ software applications
components running in the Common Object Request Broker Architecture (CORBA) and Portable
Operating System Interface [for Unix]- (POSIX-)compliant environment, CPI extends the SCA
environment, according to the Proposal 289 to SCA (FPGA/DSP extension by Mercury funded
by program office) to DSP and FPGA technologies. Analyses for suitability for Graphics
Processing Unit (GPU) and Multicore technologies have shown promise.

For FPGA environments CPI uses the industry-standard Open Core Protocol (OCP) to define
language-independent interfaces (Figure 2). OCP delivers a non-proprietary, openly licensed,
core-centric protocol that comprehensively describes the system-level integration requirements
of IP cores. OCP eliminates the task of repeatedly defining, verifying, documenting, and
supporting proprietary interface protocols.

Middleware for Waveform-Ready™ Processing Platforms
o Improved waveform code portability with standards-based interfaces
o Increased interoperability using container technology
o Quicker time to market

SCA is implemented as a client FPGA example Using CPI
Figure 2: CPI Data Flow Model

 6

A clear advantage of using OCP to describe a core’s interfaces is that the mechanisms
through which one OCP interface can talk to another are clearly defined by the OCP
specification. Even if two connected cores have dissimilar interfaces, the fact that they are valid
OCP interfaces means that the information needed to resolve those dissimilarities is readily
available. CPI builds on well-defined OCP-compliant profiles to define signals and semantics for
control, configuration, data, and memory interface patterns. These OCP profiles support
waveform component control and configuration, First In - First Out (FIFO) streaming with flow
control, message passing with random addressing and buffer reuse, and memory interfaces for
Static Random Access Memory (SRAM) or Dynamic Random Access Memory (DRAM) as well
as on-chip memories.

The dominant view of CPI is as an application framework that makes many complex
underlying platform issues go away, and extends the useful lifetime of application code in the
face of technology transitions. All parts of CPI are either focused on directly providing the
application environment, or providing plumbing, middleware, drivers, and even development
tools to support the application model.

Applications of CPI include communication terminals (including high rate satellite
communications), counter-IED (Improvised Explosive Device) and Signals Intelligence
(SIGINT) equipment, packet inspection, and other data exploitation missions. The list is limited
primarily by those applications eager or required to exploit mixed technologies, but clustered or
co-simulated systems are also appropriate. Modern communications systems are designed to
support and switch between multiple “waveform” applications. In certain cases, the systems are
designed without even knowing the application that will eventually run on them. This new
approach requires a departure from traditional design methodologies as well as what the design
engineers need in a development environment.

CPI allows users to create integrated heterogeneous subsystems, called Waveform-Ready™
platforms, and enables users to focus on their application without worrying about platform-
specific details such as interconnect technologies, memory access, or data acquisition.

As Software Designed Radio (SDR) technology moves from narrowband radios to wideband
data links and satellite communications, hardware designs rely more on FPGAs. However,
FPGA developers are furthest away from the enabling technologies of SDR such as component-
based programming and code reuse. This disconnect helps CPI offer the most value in FPGA-
heavy systems today.

To summarize, CPI helps with:

a. Code Portability: CPI increases the portability of waveform applications in
heterogeneous processing platforms by providing APIs, software modules, and
intellectual property cores that abstract the complexities of the underlying hardware
platform away from the application developer. This layer, known as containers, provides
the control, configuration, and communication abstractions consistent with system-level
component architectures compatible with the SCA. It exploits the underlying hardware
capabilities and performance, while dramatically reducing dependencies of application
code on platform technologies, topologies, and configurations. Waveform components
use CPI’s containers through open and non-proprietary interfaces. Because the interfaces
are standardized, they can be reused in any other platform that supports the same
interfaces.

 7

b. Open Core Protocol (OCP) Profiles: CPI uses the industry-standard Open Core
Protocol to define the interfaces for FPGA environments. CPI uses well-defined OCP-
compliant profiles to define signals and semantics for control, configuration, data, and
memory interface patterns. CPI will continue to build on SDR concepts, but will be
extended to more demanding, more heterogeneous technologies such as General-Purpose
computing on Graphics Processing Units (GPGPUs) and multi-core environments.

c. Increased Interoperability: CPI also facilitates the interoperability of components
executing on different computing device technologies. Typical waveform applications
consist of multiple distributed components operating within a heterogeneous embedded
environment. CPI provides an environment for FPGA, GPP, and DSP components to
interoperate seamlessly. When components communicate with one another, their
containers mediate the communication and route it over the appropriate path.

d. Quicker Time to Market: CPI allows an application to be brought to market faster. CPI’s
abstraction layer eliminates the need for the application developer to become intimately
familiar with the underlying hardware platform. The developer needs to understand and
work with only the open and non-proprietary component interfaces that are supported by
CPI. In addition, CPI’s standard interfaces facilitate the reuse of IP, thereby allowing
developers to integrate existing components onto the platform quickly and easily. “Time
to market” includes support of rapid technology insertion when parts of applications are
retargeted at very different technologies as they become available.

e. Subsystem Integration: CPI enables users to create an integrated subsystem “out-of-the-
box” saving money and more importantly, saving time.

 8

3.0 METHODS, ASSUMPTIONS & PROCEDURES
There is considerable latent value in the defense software domain owned by defense

companies. Here we clearly document how to transition software code from a proprietary and
closed environment into an OSS business model. This transition is heavily documented so that in
the future should the government (or a contractor) wish to make open source software code, this
roadmap of the transition process will be available. This benefits the wider community by
making the technology suitable and available, and additionally the application and its platform
have previously been verified through studies and reference applications.

The first OpenCPI research item addressed was which type of OSS license to use. Different
licenses engender different types of group behaviors. For instance, a Berkeley Software
Distribution (BSD) OSS license allows users to compile and sell OSS BSD code as long as the
copyright notice is attached with the code. By contrast, the GNU General Purpose License (GPL)
is the most restrictive in terms of changes made to the source code. Before changes can be
distributed, it is required that changes be shared back to that software community.

Another issue examined is how to mix software that is open source, unclassified and
classified. This is a key to proving an OSS business model that can truly function in the defense
market. Research included the examination of the OSS business model for CPI. The
requirements for this transaction were within the scope of this project. The OSS model is
intended to aid in the adoption of CPI throughout the defense community. ITAR issues were also
examined.

3.1 OpenCPI Research Agenda
The OSS community envisioned here is built around OpenCPI, and is focused entirely on the

needs of the military. Military industry partners were brought together to focus on the problems
of code portability, while being hardware agnostic for Real-Time Operating System (RTOS).
Team members had previous experience with CPI, and were very interested in seeing it become
open source. In fact, one of the team members commented that if CPI became OSS it would
change how RTE systems are built, deployed and supported.

The approach of this effort was the development of a prototype community driven website
where the users and developers of CPI interact and negotiate to add features and mature the CPI
code-base. The community helps mediate discussions around CPI needed capabilities, new ideas,
bug fixes, additional features and find support for problems and issues that occur with CPI. A
standard open source web community was utilized for this. The Software Systems Stockroom
(S3) community environment adapted the following tools to capture knowledge about CPI: OSS
Eclipse Modeling & Development Framework and the OSS Trac Integrated Software Project
Management (includes collaborative suite of software tools: email lists, wiki, subversion code
framework, etc.).

One key issue that is sometimes overlooked in code is that occasionally the key piece of
information is not listed in the design documents or the code comments, but is sometimes
contained in emails of online chat sessions. The community S3 that was built was focused on
how to harvest, store and ensure easy “findability” of unstructured content around CPI
capabilities.

 9

Defining a governance structure was also important. A good governing structure in a
software community ensures that the community will cohesively survive versus fracturing and
dying.

The key to developing and evolving a robust community that meets the needs of the members
and the government is the option to take the code and leave. The CPI community focuses not just
on CPI source code, but also on a lifecycle approach for how to build applications on top of CPI.
Test suites will be built on for how to test CPI components.

There were ultimately three research areas: 1) research how-to convert an RTE military
technology into open source software, 2) research, development and refinement of the CPI
platform and 3) develop an effective community to share knowledge and ultimately drive
development to meet new threats and new capabilities.

The core research agenda was to “open up” this component-oriented framework and
architecture consisting of experiments to verify (or disprove) this applicability in three
dimensions:

1. Processor and interconnect technology agility and supportability
2. Platform/system supportability
3. Application domain suitability (ease-of-use, natural implementation models etc.)

3.2 OSS Community Research Agenda
Questions to be answered and research deliverables for this report included:

1. What OSS license should be used?
2. How should the community be governed, e.g., How should voting occur on the CPI

codebase?
3. Define a business model for OpenCPI.
4. Examine ITAR and classification issues with CPI.
5. Define how to scale OpenCPI community in Phase 2.
6. Deliverable: CPI conversion to OSS in Phase 1 with associated collaboration website.
7. Deliverables: OSS roadmap conversion for the defense industry and OpenCPI website

user and administration guide.

 10

4.0 RESULTS & DISCUSSION
This section describes our results of converting CPI to OpenCPI and details the associated

steps of coming to a decision of which OSS license to use, how to govern an OSS community
focused around the military, releasability issues (if any) and ultimately how to scale and grow the
envisioned OpenCPI community.

4.1 Governance & OSS licensing for OpenCPI
As part of the Air Force Research Lab (AFRL) Software Systems Stockroom (S3) BAA

research program, Mercury Federal Systems, Inc. (MercFed) proposed to convert its Component
Portability Infrastructure (CPI) into open source software (OSS). To accomplish this, research
had to be done to answer the following key questions:

1. What OSS license should CPI be released under?
2. Are there any export restrictions associated with CPI?
3. What should the CPI community look like and what tools will they need?
4. How does MercFed go about this process to help to inform and educate other military

focused companies to do the same? How can this process be documented?

4.1.1 Open Source Software Licensing

Why attach an open source copyright license to software source code? The simplest reason to
attach an OSS license to software is to help users, individuals, and organizations easily use and
modify software. The argument is this: if there is not a license attached to a piece of software,
and the software is in the public domain (or on a website), how can anyone know what the
acceptable use of the software? Who wrote it? Where did the intellectual property come from?
Who owns the original copyright and trademark? Most importantly, what is an individual
allowed to do with that software?

An OSS license structures an answer to these questions for a potential user of a software
program. An OSS license lays out what rights and responsibilities are incumbent upon a user of a
software program. Developers might like ongoing recognition of their efforts or control of the
original trademark. They may also prefer that any changes to the source code be passed along to
any downstream user of that software.

First, what defines an “open source software license? Choosing an OSS license can be
daunting; at last count there were over sixty licenses2 deemed to comply with the open source
definition.3 Open source doesn't just mean access to the source code. The distribution terms of
open-source software must be accompanied with an OSS license that states what the terms and
conditions are that the users of the software need to comply with.

 11

The non-profit Open Source Initiative4 (OSI) reviews potential licenses and judges their
worthiness to be called open source. The ten tenants are:

1. Free Redistribution: The license shall not restrict any party from selling or giving away
the software as a component of an aggregate software distribution containing programs
from several different sources. The license shall not require a royalty or other fee for such
sale.

2. Source Code: The program must include source code, and must allow distribution in
source code as well as compiled form. Where some form of a product is not distributed
with source code, there must be a well-publicized means of obtaining the source code for
no more than a reasonable reproduction cost preferably, downloading via the Internet
without charge. The source code must be the preferred form in which a programmer
would modify the program. Deliberately obfuscated source code is not allowed.
Intermediate forms such as the output of a preprocessor or translator are not allowed.

3. Derived Works: The license must allow modifications and derived works, and must
allow them to be distributed under the same terms as the license of the original software.

4. Integrity of The Author's Source Code: the license may restrict source-code from being
distributed in modified form only if the license allows the distribution of "patch files"
with the source code for the purpose of modifying the program at build time. The license
must explicitly permit distribution of software built from modified source code. The
license may require derived works to carry a different name or version number from the
original software.

5. No Discrimination Against Persons or Groups: The license must not discriminate
against any person or group of persons.

6. No Discrimination Against Fields of Endeavor: The license must not restrict anyone
from making use of the program in a specific field of endeavor. For example, it may not
restrict the program from being used in a business, or from being used for genetic
research.

7. Distribution of License: The rights attached to the program must apply to all to whom
the program is redistributed without the need for execution of an additional license by
those parties.

8. License Must Not Be Specific to a Product: The rights attached to the program must
not depend on the program's being part of a particular software distribution. If the
program is extracted from that distribution and used or distributed within the terms of the
program's license, all parties to whom the program is redistributed should have the same
rights as those that are granted in conjunction with the original software distribution.

 12

9. License Must Not Restrict Other Software: The license must not place restrictions on
other software that is distributed along with the licensed software. For example, the
license must not insist that all other programs distributed on the same medium must be
open-source software.

10. License Must Be Technology-Neutral: No provision of the license may be predicated
on any individual technology or style of interface.

 A full listing of the licenses can be found on the OSI website at
http://www.opensource.org/licenses/alphabetical. A license that incorporates each of these three
freedoms also includes provisions related to the intertwined issues of copyright, intellectual
property and trademark.

4.1.1.1 Copyright & License

Currently, copyright law applies the moment an original work is created. In the case of CPI,
the original work was authored by the Mercury Computer Systems, Inc. Mercury owns the entire
copyright to the source code in CPI and thus can do anything it wishes with it. This includes
giving CPI away for free, destroying/deleting it, or licensing it for sale. MercFed decided it was
in the company’s best interests to convert CPI into an OSS licensed product and offer it to
customers under a subscription service.

Copyright laws govern OSS licenses. A copyright provides exclusive rights to do certain
things with the intellectual property that others cannot do without your permission.5 Rights that
primarily concern software are:

 An exclusive right to make copies.
 An exclusive right to prepare derivative works.
 An exclusive right to distribute copies of the original or derived works.
 The full list of rights can be found in the U.S. Copyright Act, 17 U.S.C. §106.

In essence, copyright allows the owner exclusive rights to do certain things. The copyright

owner can then grant a license to someone else to copy, modify, or distribute a piece of software.
A license gives boundaries around the use of a piece of Intellectual Property (IP) and provides
conditions on its use. Licenses also allow IP owners recourse if conditions are not met or
boundaries are violated in the course of using the IP. In the case of OSS, licenses can be
considered a contract, although there are differing views on this.

http://www.opensource.org/licenses/alphabetical

 13

4.1.1.2 Intellectual Property & Patents

Patents dictate and enforce how an original idea is controlled. Patents give an owner the right
to exclude others from doing certain things with patented intellectual property:6

 The right to exclude others from making products embodying your patented invention.
 The right to exclude others from using products embodying your invention.
 The right to exclude others from selling or offering for sale products embodying your

invention.
 The right to exclude others from importing products embodying your patented invention.
 The full list of rights can be found in the U.S. Patent Act, 35 U.S.C. §154.

A patent grant is an affirmative license to practice patents necessary to make, sell or offer for

sale, or import the software, but only to the extent of patent claims actually owned or controlled
by the licensor.

Since software sometimes had patents associated with its use, some of the OSS licenses
provide a license to users of that software to use and extend the software without conditions
except those embodied in the license.

4.1.1.3 Trademark

Trademark provides exclusivity over the use of a name. For example: RedHat Linux is a
branded version of Fedora Linux, and only RedHat can market and sell the RedHat version of
Linux. This allows Redhat to create a brand around their version of Linux. Most successful open
source software projects claim trademark over the name of an OSS project to ensure that quality
can be met and maintained.

Registering a trademark can be either a relatively easy process or an expensive process,
depending on how much protection a company desires. Details on how to register a trademark
can be found on the U.S. Patent and Trademark Office’s website: http://www.uspto.gov.

4.1.1.4 OSS License Types

The over sixty types of OSS licenses can be grouped into three categories: permissive (or
Academic), partially closable, and reciprocal. Permissive licenses are by far the most open, and
allow the software source code to be used in any fashion by a user. Permissive licenses are also
referred to as academic licenses, since a majority of them came out of an academic environment,
where making ideas accessible is of paramount importance.

The three general classes of software licenses are:

a. Permissive (or Academic)
 Allows unfettered access to the code.
 Can be added into proprietary applications and resold or relicensed.
 There are no requirements for downstream sharing of source code.
 Examples of permissive OSS licenses include BSD, MIT, and Apache.

b. Partially Closable

http://www.uspto.gov

 14

 Proprietary applications can use an unmodified version of a software library in a closed
source, proprietary licensed product. For example, if changes are made to a software
library under the Lesser General Public License (LGPL), the modified source code
(corresponding to that library) along with the binary application must then be distributed
to the end users.

 LGPL projects include Jboss and Open Source Software Image Mapping (OSSIM)

c. Reciprocal
 Requires licensee of the code to reciprocally apply the same open source license to any

code derived from the originally licensed code.
 Each binary distribution also includes the application’s full source code.
 Reciprocal licenses include the General Public License (GPL).
 The best known GPL example project is Linux.

OSS licenses, like software and other technologies, have adoption lifecycles that show up in

the statistics of what licenses are the most widely used. Statistics from a study7 presented on the
OSS software hosting website Freshmeat.net (on 11/10/2003) show that almost 70% of the
32,592 OSS projects surveyed were GPL-licensed, while LGPL and BSD were 5.2% and 4.8 %,
respectively. The other major OSS project hosting website SourceForge.net (on 11/10/2003)
showed that GPL projects accounted for 71% of 45,736 projects hosted, with LGPL at 10% and
BSD at 7%. While neither was an exhausting survey, it showed that GPL and GPL-compatible
licenses predominantly share the OSS license market.

4.1.1.5 OSS License Combinations

Simply picking and using an OSS license wasn’t the end of the process. Software is usually
combined and recombined with other types of closed and open source software, resulting in
software that is governed by one or both of the licenses. Great care should be taken when picking
a license to ensure that a software program can be used and reutilized by the widest group of
users as possible.

As illustrated in Figure 3, only some OSS licenses can be combined with other types of
licenses while meeting the requirements of those licenses.

 15

Figure 3: OSS Licenses Interaction8

To quote David Wheeler8 at length:

“In this figure [Figure 3], the shaded boxes are the names of different FLOSS
licenses. An arrow from box A to box B means that you can combine software with
these licenses; the combined result effectively has the license of B, possibly with
additions from A. To see if software can be combined, just start at their respective
licenses, and find a common box you can reach following the arrows (aka “following
the slide”). For example, Apache 2.0-licensed software and GPLv2+-licensed
software can both reach “GPLv3 or GPLv3+”, so they can be combined using GPLv3
or GPLv3+. This figure has been carefully crafted so following a path determines if
two licenses are compatible. For more information you must examine the license text,
but this gives the basic answer quickly.

At the left are the “permissive” licenses, which permit the software to become
proprietary (i.e., not FLOSS). At the top left is “Public Domain”, which strictly
speaking isn’t a license but in effect it works like one. You can do anything with
public domain software, but it is rare; the software must be explicitly released to the
public domain or be created by a U.S. Government employee in their official
capacity. Next is the so-called “MIT” or “X11” license, which is very permissive
(you can do just about anything except sue the author). Software under the MIT
license is easily combined with the modern 3-clause Berkeley Software Distribution
(BSD-new) license, which compared to the MIT license adds a clause forbidding the
use of the author’s name to endorse or promote products without permission (it’s
debatable if this clause actually does anything, since you typically have to have such
permission anyway). Finally we have the Apache version 2.0 licenses.

 16

At the right are the “strongly protective” (“strong copyleft”) licenses, which prevent
the software from becoming proprietary. This includes the most popular FLOSS
license, the GNU General Public License (GPL). The GPL has a version 2 (GPLv2)
and 3 (GPLv3); a “+” afterwards means “version X or later”. GPLv2-only cannot be
combined with the network-protective Affero GPLv3, but GPLv2+ (“version 2 or
later”) can via GPLv3.

In the middle are the “weakly protective” (“weak copyleft”) licenses, a compromise
between permissive and strongly protective licenses. These prevent the software
component (often a software library) from becoming proprietary, yet permit it to be
part of a larger proprietary program. This figure shows the rules when you are making
other software part of the weakly protected component; there are other possibilities if
you are only using the component as a library. The GNU Lesser General Public
License (LGPL) is the most popular weakly protective license, and has a version 2.1
(LGPLv2.1) and 3 (LGPLv3). Note that LGPLv2.1 gives you permission to relicense
the code under any version of the GPL since GPLv2. Another such license is the
Mozilla Public License 1.1 (MPL 1.1), but the MPL has the serious drawback of
being incompatible with the widely-popular GPL; you can’t even use an MPL module
in a larger GPL’ed program.”

 17

In Table 1 the website Java.net has a more detailed version of how to combine software
licenses and the software freedoms espoused by Open Source Initiative (OSI) and then how that
resulting software can be shared.

Table 1: Software Licenses Combinations9

4.1.2 OSS Licensing for OpenCPI

For CPI to be converted four assumptions were generated in the process of researching OSS
use and conversion of closed source into OSS in a real-time, embedded software environment.

Assumptions, with justification, are:

 Must be GPL compliant, to enable maximum reuse of CPI with other OSS programs

GPL license compliance is key as noted previously. GPL and GPL-variant licenses
overwhelming are the choice for the wider OSS community. Together GPL-type licenses control
near 80% of the market. Picking a license that can’t be combined with other software projects
would limit the ability of OpenCPI to be used by the wider defense community, in effect creating
an “OpenCPI” island where only CPI-related code can be comingled.

 Do not create new or 'special' Government or Company specific OSS license

There is a history of organizations and companies concluding that they want to release
software as open source, but they also desire additional rights. This has lead to license inflation,
with too many licenses to choose from, and even worse, software packages being unable to inter-
operate with respect to software license because no one has completed the legal analysis to
decide whether (to assumption #1) they could be combined, for example with the GPL or Apache
OSS licenses. In general: the rule in the OSS community is, don’t create new OSS licenses.

 18

 The CPI OSS license needs to 'fit' into the real-time embedded software community

MercFed needs to be cognizant that OpenCPI is meant to be used by the real-time embedded
software community, and needs to understand how this community views OSS systems and
integrates software into its mission sets.

In general, the real-time embedded market is focused on the high-speed performance of
systems. For example, these systems are very tightly coupled with software that requires real-
time systems using GPL licensed and modified code to be shared back with the GPL. OpenCPI is
a middleware product connecting hardware compute resources with applications. For example,
the intellectual property in a FPGA is sometimes proprietary, as can be the application suite of
tools. Real-time embedded systems can also be heavily modified and statically linked, which
requires source code to be shared under the GPL. For this reason using the GPL license is not a
viable option at this time for OpenCPI, since vendors and systems integrators who would use
OpenCPI would tend to shy away from GPL encumbered licenses. For this very reason some
defense contractors also have prohibitions against using GPL licenses outside of operating
systems.

 A CPI OSS license needs to lower the friction of using OpenCPI and foster the greatest
use possible, leading to a community that grows and scales to fit the needs of the military.

To follow these points, any real or perceived barriers to use OpenCPI in the defense industry

must be eliminated. Choosing a license where there is a prohibition may affect longer-term
growth and potential for CPI.

4.1.2.1 OpenCPI Licensing

After completing the research of open source software licenses (and due to Section 4.1.1.4 –
OSS License Types), it was determined that there are only 5 license types to consider (note: all
licenses are versioned):

 Apache
 Mozilla Public License (MPL)
 Berkeley Software Distribution (BSD) / MIT variants
 Lesser General Public License (LGPL)
 GNU General Public License (GPL)

Most of these licenses have several versions (and per Section 4.1.1.5 – OSS License

Combinations), and some cannot be combined together. For example, according to Free Software
Foundation & others10, the Apache license version 1 – 1.1 and the MPL are not GPL compliant

4.1.2.2 Context of OSS Licensing for OpenCPI

Our plan is for OpenCPI to be used extensively within the US military and associated
defense markets in the real-time and embedded software domain. The license chosen for
OpenCPI also needs to be compatible with other OSS projects in the military embedded space as
well.

 19

A few key OSS projects used in the military and embedded software space include:

 RedHat (http://www.redhat.com/) is the premier Linux and middleware vendor to the US
military. They utilize the GPL v3.0 and a commercial license to support Linux, and the
LGPL v 2.1 and a commercial license for the middleware JBoss support.

 NetFPGA (http://www.netfpga.org/) is an OSS project to enable researchers and students
to build working prototypes of high-speed, hardware-accelerated networking systems.
The NetFPGA is a line-rate, flexible, and open platform for research and classroom
experimentation. About 1,000 NetFPGA systems have been deployed at over 120
institutions in over 15 countries around the world. The NetFPGA is used by many
classroom teachers to help students learn how to build Gigabit Ethernet (GigE) switches
and Internet Protocol (IP) routers. It has also been used by researchers to prototype new
modules that use hardware rather than software to forward packets, and is governed by a
BSD-style OSS license.

 VSIPL (http://www.vsipl.org/) stands for Vector Signal Image Processing Library, and is
an application programming interface that is defined by an open standard. It was
developed by embedded signal and image processing hardware and software vendors,
academia, application developers, and government laboratories. A number of hardware
and software vendors have VSIPL products, and it is being increasingly used by
developers who desire a highly efficient and portable computational middleware for
signal and image processing applications. It uses a BSD-style OSS license.

 RTLinuxFree (http://www.rtlinuxfree.com/) provides a mechanism for downloading,
evaluating, and using RTLinux technology, subject to the terms and restrictions of the
Open RTLinux Patent License. The license requires that all applications using the free
RTLinux download be GPL licensed, and also requires that the application source code
be made publicly available on the Web. In exchange, Wind River provides royalty-free
use of the patented RTLinux process. Open RTLinux is for academic research and other
open software projects that include real-time functionality on a self-supported, free
software basis. For additional information, see the Open RTLinux Patent License. Wind
River Real-Time Core is for projects with stringent requirements for off-the-shelf,
guaranteed real-time functionality in commercial-grade software, accompanied by
professional support and services to meet pressing time-to-market goals.
RTLinuxFree.com is governed by both the GPL and a commercial license.

 OpenSAF (http://www.opensaf.org/) is an Open Source Project established to develop a
base platform High Availability middleware consistent with Service Availability
Forum™ (SA Forum) specifications under the LGPLv2.1 license. The OpenSAF
Foundation was established by leading Communications and Computing Companies to
facilitate the OpenSAF Project and to accelerate the adoption of the OpenSAF code base
in commercial products. The objective of the new OpenSAF project is to accelerate broad
adoption of an SA Forum compliant operating environment. The goals of the OpenSAF
project are:

http://www.redhat.com/
http://www.netfpga.org/
http://www.vsipl.org/
http://www.rtlinuxfree.com/
http://www.opensaf.org/

 20

o Create an open source implementation of a high availability-operating
environment, which includes the SA Forum Application Interface Specification.

o Develop the necessary additional complementary services required to deploy and
manage software.

o Accelerate the development of SA Forum specifications by proposing
enhancements implemented in the OpenSAF project.

o Establish a broadly adopted high availability operating environment that can be
leveraged by computing technology companies, NEPs and other industries
requiring high availability and ISVs.

o Utilize an open source licensing model not tied to any commercial
implementation.

 Qt (http://www.qtsoftware.com/products/) is a cross-platform application and user
interface framework. Using Qt, applications can be written once and then deployed across
many desktop and embedded operating systems without rewriting the source code. Qt
uses the LGPL v2.1 and GPL 3.0 OSS licenses and a commercial license.

 OpenEaagles (http://www.openeaagles.com/docs.html) is an open source framework
designed to support the rapid construction of virtual (human-in-the-loop) and constructive
simulation applications. It has been used extensively to build DIS compliant distributed
simulation systems. Serving as a simulation design pattern it provides a structure for
constructing simulation applications. The framework aids the design of robust, scalable,
virtual, constructive, stand-alone, and distributed simulation applications. It leverages
modern object-oriented software design principles while incorporating fundamental real-
time system design techniques to meet human interaction requirements. It is released
under the LGPL V 3.0 OSS license.

The defense community is unofficially resistant1 to using the GPL license outside of Linux
software programs. The main reason seems to be misconceptions on what GPL license
requirements means with respect to publishing and distributing of source code. A number of
vendors are reluctant to be in a position where they may have to distribute source code if
modifications are made to an OSS GPL program.

1 Not-for-attribution conversations with individuals in defense companies

http://www.qtsoftware.com/products/
http://www.openeaagles.com/docs.html

 21

There is a large amount of OSS software outside of the GPL used throughout the defense
community. As a 2003 MITRE report11 pointed out if DoD removed all OSS from its systems, it
would simply cease to function as an enterprise. OSS is obviously used in classified settings. In
fact a few projects listed below have figured out how to deploy and use OSS in unclassified and
classified settings:

 Open Source Software Image Map (OSSIM) (http://www.ossim.org) provides advanced
geo-spatial image processing for remote sensing, photogrammetry, and Geographic
Information Systems. Backed by an active open source software development
community, OSSIM solutions have been deployed on a number of critical commercial
and government systems. OSSIM is used at military and intelligence agencies such as
NGA and NRO in highly classified settings.

o OSSIM classified code is kept on a JWICS (IC network) website for anyone with
the IC to use. Bug-fixes and new ideas for features and upgrades are worked on in
an unclassified setting, and published into the public OSS website if those fixes
and features are of an unclassified nature.

o New public OSS OSSIM source code is burned onto a CD and brought into a
classified setting. No source code is ever brought out from a classified setting due
to information security requirements.

o OSSIM is supported by RadiantBlue, Inc., who insures the security of all source
code before military use is authorized.

 Opticks (https://opticks.ballforge.net/) is an open source remote sensing application and
development framework. Opticks supports imagery, motion imagery, SAR, multi-
spectral, hyper-spectral, and other types of remote sensing data. Opticks is licensed under
LGPL 2.1. This means software developers can easily extend Opticks’ functionality and
provide that capability to the open source community. It can also be embeded in
commercial applications.

o Opticks also has classified elements, which like OSSIM are modular libraries
located on classified client facilities.

o Opticks is supported by Ball Aerospace, Inc., who insures the security of all
source code before military use is authorized.

4.1.2.2.1 How to determine which OSS License for OpenCPI
The best guide on how to pick a license was found in a web posting12, which very succinctly

laid out a yes/no questionnaire on how to pick a license. Below we have answered the questions
for converting CPI into OpenCPI; our responses are made in bold and italics.

Do you want to relinquish any control over how your code is used and
distributed?

• NO: put it under the BDS/MIT

• YES: Copyright it, and then ask:

http://www.ossim.org
https://opticks.ballforge.net/

 22

Do you want to allow people to use your code in non open-source programs?

–NO: release it under the GPL

–YES: then ask:
If somebody uses your code in their program and sells their program for money,
do you want some of that money?

- YES: Dual-license or don't release the source at all and use a closed-source
license.

- NO: Use a "commercial-friendly" license, and ask:
If somebody uses your code and improves it (fixes bugs or adds features) do you
want to make them give you the improvements back so you can use them too?

–NO: Use a non-reciprocal license.

–YES: Use a reciprocal license

4.1.2.3 OSS License for OpenCPI

The best candidate to release CPI under is the LGPL (GNU LESSER GENERAL PUBLIC
LICENSE) Version 3.13 We have chosen the LGPL for a number reasons, which include:

 The LPGL is a partially closable license: proprietary applications can use unmodified
version of the library in a closed source, proprietary licensed product. If changes are
made to an LGPL'ed library and distributed, then that modified source code
corresponding to that library along with the binary application must be passed along.

 Derivative works must be made available under LGPL.
 The LGPL is primarily used for software libraries, which is what a good portion of what

CPI is.
 The LGPL can be mixed with a wide variety of other OSS licenses (see section 4.1.1.5),

most specifically the GPL.
 Another more prominent LGPL project that can be compared to OpenCPI is JBoss, which

is also a middleware type project.

One of the key features in S3 is to be able to lower the barriers to entry by making sure
intellectual property is not captured and locked up by one vendor. We see using the LGPA as a
key feature of OpenCPI adoption, which allows an increased competition while speeding
developing, which will ultimately lowering costs. The LGPA has some share-and-share-alike
features, which are not perceived by industry to be as onerous as the GPL.

OpenCPI value can also be added by supporting 3rd party hardware, including other users’
and developers’ designs. The idea is to offer OpenCPI on user’s preferred hardware platforms.
This approach allows a user to develop applications using the CPI interfaces.

 23

4.1.3 OSS Governance

Governance as defined in software source code are the methods and processes necessary to
publically release source code. Governance includes answering the issues of how new source
code and bug fixes are accepted into the baseline. Also, what is allowed to enter the source code,
and what is not, and who in the OpenCPI community is allowed a vote to add new source code
into the baseline?

A good governing structure in an OSS software community will ensure that the community
will cohesively survive. Governance includes the processes that OpenCPI will use to ensure that
code contributions are certified and verified as the ‘work of the submitter’.

4.1.3.1 Acceptance of OpenCPI Source Code

To accept new source code, bug fixes, and suggested changes to the baseline OpenCPI code,
the OpenCPI community will require a signed form. This will verify that the code is the work of
the submitter and that he or she has the right to submit the source and agrees to have their source
code released under the OpenCPI OSS license, OpenCPI Source Code Governance Process.

Initially since the OpenCPI community is small, a ‘Benevolent Dictator’ (BD) model will be

used for deciding when things are accepted into the software source codebase. The BD will be a
MercFed Senior Embedded System Scientist. As OpenCPI matures, other qualified (and
motivated) individuals will be accepted, and the model of acceptance will become a small
‘Governance Board’. Everyone in that board will have a vote on when additional codes can be
accepted into the code-base. The ‘unanimous’ model seems to work best for systems such as this
where the high reliability of source code is required.

As OpenCPI matures, an experimental release (as an odd number) coupled with a
corresponding stable release (as an even number) will be available. The experimental release
gives the OpenCPI community a chance to test new features and uncover flaws or bugs before
being added into later source code releases.

4.2 International Traffic in Arms Regulations (ITAR)
International Traffic in Arms Regulations (ITAR) governs how and if technology related to

the US military and intelligence communities can be shared and exported outside the United
States. To determine if a piece of software is an export controlled item, there are two questions
that need to be asked. Was that software built for an already ITAR controlled item, and was that
software developed for a specific application that is defense related?2 If the answer to both
questions is ‘no’, then the software isn’t export controlled.

Under U.S. law, there are two primary types of export controls. Controls on the export of
commercial and "dual use" items (items that are intended for commercial use but can also be
applied to military uses) are administered under the Commerce Department's "Export
Administration Regulations" (EAR). Controls on "defense articles and defense services and
related technical data" (including software) are administered under the State Department.14

2 Consult a lawyer to answer specific questions about ITAR.

 24

Figure 4: CPI Export Control Summary

CPI was reviewed in 2008 by Mercury Computer Systems and was found not to be an ITAR
controlled item and was classified as EAR and submitted to the US Commerce Department for
ECCN approval on May 1, 2009 (the response expected back in about 30 days). Figure 4 is a
summary of the Mercury report on CPI. A more complete report is located in Appendix A.

 25

4.3 Classified Issues
As discussed previously, OSSIM and Opticks are two well known projects that release source

code into the public domain utilizing OSS licenses, and both of these projects have migrated
codes into highly classified environments. Both of these projects store public OSS source code
on classified networks in code repositories. Additionally, both are stored as modular classified
libraries and algorithms, and additional codes can be added depending upon the particular
military capabilities that are being developed. This is illustrated for CPI in Figure 5.

RadiantBlue and Ball Aerospace, companies who support OSSIM and Opticks respectively,
are contracted by the government to keep the software baseline updated with bug fixes, new
features, governance and keeping the public and classified versions of the source in sync with
each other.

4.4 Best practices of other existing OSS communities
A number of the ideas promulgated previously in this report are culled from the best practices

of other successful OSS communities. The primary goal here is a community driven website
where the users and developers of OpenCPI can interact and negotiate to add features and mature
the code-base. One thing that is required is a community manager to mediate discussions around
OpenCPI desired capabilities, new ideas, bug fixes, additional features and find support for
problems and issues that occur with CPI. Initially MercFed is the community manager.

Figure 5: OSS and Classified Settings

 26

An issue that is sometimes overlooked in a code is that a key piece of information is not listed
in the design document or the code comments, but might be found in for instance an email or
online chat session. The OpenCPI community currently has in place email lists and a wiki to help
harvest, store and ensure easy “findability” of unstructured content around OpenCPI capabilities.
Existing CPI design documents will be posted inside www.opencpi.org.

4.4.1 Findabilty
MercFed also made the OpenCPI project ‘findable’ to the outside public world, which means

the project was posted to OSS meta-directories like www.freshmeat.net and
www.sourceforge.org, and listing/posting the project to mailing lists and sites where real-time
developers, users and academics frequent for information. MercFed also needed to optimize how
search engines could find OpenCPI and match search terms such as embedded, real-time and
open-source-software, so that the www.opencpi.org website would come up at the top of a web
search.

4.4.1.1 Logo

One key feature of marketing OpenCPI to help it stand out was its logo, which is presented in
Figure 6.

4.4.2 OpenCPI Community Resources
A crucial part of making OpenCPI a success was to engage the user and developer

communities. We made extensive use of various pieces of internet sharing and collaboration,
including websites, developer collaboration tools, wiki’s, emails and web-based discussion lists to
knit together the community.

Figure 6: OpenCPI Logo

http://www.opencpi.org
http://www.freshmeat.net
http://www.sourceforge.org
http://www.opencpi.org

 27

4.4.2.1 OpenCPI Website

The OpenCPI website is located at www.opencpi.org and is the central place on the web
to find information about OpenCPI. There are links to emails list and developer resources here as
well. A screen shot of the home page is presented in Figure 7.

Figure 7: OpenCPI Website

4.4.2.2 Wiki

OpenCPI makes extensive use of the wiki’s to simplify the gathering of OpenCPI
knowledge located at www.opencpi.org/wiki, as shown in Figure 8.

Figure 8: Example of OpenCPI Wiki

http://www.opencpi.org
http://www.opencpi.org/wiki

 28

4.4.2.3 Email & Discussion Lists

OpenCPI also has two email lists that individuals call sign up to:

 opencpi_announce@lists.opencpi.org for general OpenCPI announcements; and
 opencpi_dev-request@lists.opencpi.org for OpenCPI software developers.

4.4.2.4 Software Source Code & OpenCPI Roadmap

OpenCPI deployed its code to the website: http://trac.opencpi.org, a screen shot of which
is shown in Figure 9. Trac is a software road-mapping tool that MercFed will use to track bugs
and desired new features.

Figure 9: OpenCPI Software Source Code Website

mailto:opencpi_announce@lists.opencpi.org
mailto:opencpi_dev-request@lists.opencpi.org
http://trac.opencpi.org

 29

5.0 CONCLUSIONS
Building a community around an open source software project is complex. Our concept here

was to gather like-minded individuals who have the same problem sets around real-time and
embedded software. In the future we will need to broaden the community.

5.1 OpenCPI Business Model
One of the best ways to grow and maintain a healthy software baseline is to ensure that there

are revenue opportunities available. The most successful company that has been able to monetize
open source software is RedHat with its two main product lines RedHat Linux and JBoss. RedHat
provides a subscription service to both of these products that include help line support, rapid
updates of bug and new features. Additionally, tool sets are provided that help manage the
product lines internal to a customer. Sun Microsystems also sells a subscription support service
for all of its associated open source software products including OpenSolaris and Java.

There are a number of different business models15, which are in order of lower to higher
value:

1. Selling installation, service and support with the software.
2. Versioning the software, with the free version as an entry-level offering and other, more

advanced versions as value-added offerings.
3. Integrating the software with other parts of the customer’s information technology

infrastructure.
4. Providing proprietary complements to open source software.
MercFed anticipates selling subscription services of updates of OpenCPI source code coupled

with proprietary complements to OpenCPI. An unanswered question is what it is that a
subscription should be linked to. Redhat links their subscriptions to auditable items, such as a
personal computers or servers. MercFed needs to determine what the OpenCPI link should be.
Possibilities include a computer chip, a board, an entire computer, a system, a military program or
an enterprise. This decision will be made in conjunction with the development of the OpenCPI
value proposition.

5.1.1 Other Deliverables
There are additionally three other deliverables as part of this research project:

 Open Source Software (OSS) Roadmap for Defense Industry, which presented how a
company can convert previously closed source software into open source, and is a subset
of this report.

 OpenCPI.org Administration Guide, which details how to manage the OpenCPI website.
 OpenCPI.org Users Guide, which describes how a user can navigate and use the OpenCPI

website.

5.2 Lower Barriers to Entry
To broaden the community, the barrier to entry to using OpenCPI needs to be lowered. This

means simplifying the installation and use process of OpenCPI. A hardware bill of materials,
presented in Appendix B, is available for download at OpenCPI.org. This is a simplified
description of what an example OpenCPI system. Our developer and build notes about the sample
systems we are also building are also being posted there.

 30

Methods to lower barriers to entry to use OpenCPI include:
 Hardware: At http://opencpi.org/wiki current and new ideas about the types and

configurations of hardware deployed with OpenCPI can be posted for others to use.
 Software: OpenCPI progressively evolve and become easier to download and use quickly ‘out

of the box.’ This includes building better software developer kits (SDKs) and more extensive
installation notes.

 Communication channels: OpenCPI needs to have multiple communication channels,
including a blog, wiki, email lists, twitter feed and eventually an always on IRC (internet chat
relay) chat channel so that developers and users feel they always have 24/7 distributed
support.

5.3 Engage the Academic & Research Community
Most open source software projects have seen great adoption by users in the academic and

research communities since the technologies are so accessible to use and extend. OpenCPI has
reached out to the academic community and is slowly gaining interest and traction. A key feature
for future work would be to fund academic research and development projects to show that
OpenCPI can be a key technology enabler.

5.4 Engage Defense & Industry
The community that will have the most to gain from OpenCPI across a number of application

areas is the military, so it is vital that MercFed engages current and potential military users of
OpenCPI. Currently OpenCPI is a part of two military science and technology programs:

 Joint Counter RCIED Electronic Warfare (JCREW) CIED Defeat Experimental
Software Platform. RACID is an acronym for Radio Controlled Improvised Explosive
Device.

 United States Air Force (USAF) High Data Rate-Radio Frequency (HDR-RF)
SATCOM Modem Program, Phase 1.

Both programs are ongoing and have significant government and contractor interest in the
OpenCPI software product line. Currently the following defense partners are evaluating the
value in OpenCPI, and are considering new and future programs for inclusion of OpenCPI:

 Aurora Flight Systems, Inc. (Manassas, VA).
 General Dynamics, Inc., Advanced Information Systems (Reston, VA).
 BAE America, Inc. (Herndon, VA).

Additionally, there are partners outside the traditional defense sphere whose products are
extensively used in the defense industry have expressed interest include:

 Advanced Micro Devices (AMD), Inc. (computer chip vendor)
 Xilinx, Inc. (FPGA vendor)
 Achronix, Inc. (FPGA vendor)

5.5 Add Features and Applications
As MercFed endeavors to build the OpenCPI ecosystem, new features will be required and

added to OpenCPI. Users of OpenCPI will be encouraged to acknowledge what applications
have been built on top of OpenCPI.

http://opencpi.org/wiki

 31

6.0 REFERENCES

1. Technology Readiness Level Definition:
http://en.wikipedia.org/wiki/Technology_Readiness_Levels.

2. Open Source Initiative OSS license list: www.opensource.org/licenses/alphabetical.

3. OSI, Open source definition: www.opensource.org/docs/osd.

4. OSI website: www.opensource.org.

5. Rosen, Lawrence Rosen, Open Source Licensing: Software Freedom and Intellectual
Property Law, Pretence Hall PTR, Upper Saddle River, NJ, 2005, p. 22.

6. Ibid, Rosen, p. 23

7. Wheeler, David: http://www.dwheeler.com/essays/floss-license-slide.html.

8. Ibid, D. Wheeler.

9. http://java.net/choose_license.csp.

10. Free Software Foundation License Compliance: www.fsf.org/licensing/compliance.

11. Use of Free and Open Source Software in the U.S. Department of Defense, V. 1.2.02,
released November 6, 2002.

12. Burnette, Ed, ZDNet.com Blog, June 14th, 2006, HOWTO: Pick an open source license:
http://blogs.zdnet.com/Burnette/?p=130.

13. GPL OSS License: www.gnu.org/licenses/lgpl.html.

14. Wheeler, David: http://www.dwheeler.com/essays/dod-oss-qa.html#itar.

15. Chesbrough, Henry William, Open Business Models: How to thrive in the New Innovation
Landscape, Harvard Business School Press, Boston, MA, 2006, p. 45.

http://en.wikipedia.org/wiki/Technology_Readiness_Levels
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/docs/osd
http://www.opensource.org
http://www.dwheeler.com/essays/floss-license-slide.html
http://java.net/choose_license.csp
http://www.fsf.org/licensing/compliance
http://blogs.zdnet.com/Burnette/?p=130
http://www.gnu.org/licenses/lgpl.html
http://www.dwheeler.com/essays/dod-oss-qa.html#itar

 32

7.0 LIST OF ABBRVIATIONS AND ACRONYMS

API Application Programming Interface

BD Benevolent Dictator

BSD Berkeley Software Distribution

CIED Counter Improvised Explosive Devices

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-The-Shelf

CPI Component Portability Infrastructure

DoD Department of Defense

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

EAR Export Administration Regulations

FLOSS Free/ Libre/ Open Source Software

FIFO First In, First Out

FOUO FOR OFFICIAL USE ONLY

FPGA Field-Programmable Gate Array

GigE Gigabit Ethernet

GNU Recursive acronym for “GNU’s not Unix!”

GPGPU General-Purpose computing on Graphics Processing Unit

GPL General Purpose License

GPP General-Purpose Processors

GPU Graphics Processing Unit

HAL Hardware Abstraction Layer

HDR-RF High Data Rate-Radio Frequency

IED Improvised Explosive Device

I/O Input/Output

IP Intellectual Property

ISR Intelligence, Surveillance and Reconnaissance

ITAR International Traffic in Arms Regulations

JBoss A division of Red Hat

JCREW Joint Counter RCIED Electronic Warfare

LGPL Lesser General Public License

MIT Massachusetts Institute of Technology

MPL Mozilla Public License

NT Intelligence

 33

OCP Open Core Protocol

OpenCPI Open Component Portability Infrastructure

OSI Open Source Initiative

OSS Open Source Software

OSSIM Open Source Software Image Map

OST Open Source Initiative

POSIX Portable Operating System Interface [for Unix]

RACID Radio Controlled Improvised Explosive Device

RTE Real-Time Embedded

RTOS Real-Time Operating System

S3 Software Systems Stockroom

SA Forum Service Availability Forum™

SATCOM Satellite Communications

SCA Software Communications Architecture

SDK Software Developer Kit

SDR Software Defined Radio

SIGINT Signals Intelligence

SRAM Static Random Access Memory

TRL Technology Readiness Level

VSIPL Vector Signal Image Processing Library

xxxINT Signals, Communications, Electronics, etc. - Intelligence

 34

APPENDIX A: ADDITIONAL REFERENCES
• Open Source Licensing, Lawrence Rosen, Pretence Hall 2005.
• Open Source & Free Software Licensing, St. Laurent, Andrew M., O’Reilly Media 2004.
• Open Source 2.0, DiBona, Cooper & Stone (Editors), O’Reilly Media 2006.
• Open Source Initiative, http://www.opensource.org/.
• Intellectual Property and Open Source, Van Lindberg, O’Reilly Media 2008.
• Weber, Steven, The Success of Open Source, Harvard University Press, 2004.
• US Navy Open Architecture Guidance -

https://acc.dau.mil/CommunityBrowser.aspx?id=105662.
• AS&C OTD Roadmap - www.acq.osd.mil/actd/articles/OTDRoadmapFinal.pdf.
• OTD Website – www.opentechdev.org.
• Clinger-Cohen Act of 1996 (in P.L. 104-106), 5123, Performance and Results-Based

Management.
• Title 5, United States Code, 306, Strategic Plans (part of Government Performance and

Results Act (GPRA)).
• CJCSI 3170.01, “Requirements Generation System (Formerly MOP 77),” 6/13/97.
• Title 10, United States Code, Section 2377, Preference for acquisition of commercial

items.
• Federal Acquisition Regulation, Part 6.3, Other Than Full and Open Competition.
• Defense Federal Acquisition Regulation Supplement, Appendix D, Component Breakout.
• Clinger-Cohen Act of 1996 (in P.L. 104-106), 5122, Capital Planning And Investment

Control, 5123, Performance And Results-Based Management, and 5202, Incremental
Acquisition Of Information Technology.

• ASD(C3I) memorandum, “Use of the Ada Programming Language,” April 29, 1997.
• Department of Defense Directive 4630.5, Compatibility, Interoperability, and Integration

of Command, Control, Communications, and Intelligence (C3I) Systems, Nov.12, 1992.
• Department of Defense Instruction 4630.8, Procedures for Compatibility,

Interoperability, and Integration of Command, Control, Communications, and
Intelligence (C3I) Systems, November 18, 1992.

• CJCS Instruction 6212.01A, Compatibility, Interoperability, and Integration of
Command, Control, Communications, Computers, and Intelligence Systems, June 30,
1995.

• Clinger-Cohen Act of 1996 (in P.L. 104-106), 5202, Incremental Acquisition Of
Information Technology.

• Title 44, United States Code, 3506, Federal agency responsibilities (amended by Public
Law 104-13, Paperwork Reduction Act (PRA) of 1995).

• Memo: CIO John P. Stenbit SUBJECT: Open Source Software (OSS) in the Department
of Defense (DoD), May 28, 2003.

http://www.opensource.org/
https://acc.dau.mil/CommunityBrowser.aspx?id=105662
http://www.acq.osd.mil/actd/articles/OTDRoadmapFinal.pdf
http://www.opentechdev.org

 35

• MITRE Corporation Report: Use of Free and Open-Source Software (FOSS) in the U.S.
Department of Defense, Version 1.2.04, January 2, 2003, Report # MP 02 W0000101.

• IBM VC calls for 'open' hardware, Richard Goering, EE Times, 04/08/2005,
www.eetimes.com/news/design/showArticle.jhtml?articleID=160502705.

• Raymond, E.S., The Cathedral & the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary, O’Reilly Publishers, 2001.

http://www.eetimes.com/news/design/showArticle.jhtml?articleID=160502705

 36

Appendix B: Mercury CPI ITAR Report

 37

 38

 39

 40

APPENDIX C: CPI DATASHEET

 41

 42

APPENDIX D: OPENCPI HARDWARE BILL OF MATERIALS
OpenCPI Reference Platform, COTS Component Specification

Shepard Siegel, Atomic Rules LLC (Shepard.Siegel@atomicrules.com)

This document specifies the COTS components used for the OpenCPI FPGA Reference
Platform (OC-FRP). The parts and vendors specified herein have been selected for their ubiquity
and low-cost. For most of the items listed, component substitutions may be made. However, the
burden of testing is then upon the user. Pricing is non-binding, quantity-one, and guidance only.

Development and Target Computer, Hardware Components
It is possible to use one computer as both a development machine and a target. Table 1

lists components central to the performance of this system.

Table D1: FPGA Reference Platform, Hardware Components
Line # Manufacturer Part Number Cost Description

1 1 www.evga.com 132-BL-E758-A1 $300. X58 Motherboard

2 1 www.intel.com Corei7 920 $280. Nehalem 2.66GHz x4 Processor

3 2 www.corsair.com DDR3 3x2GB $190. 6x2GB (12GB) DDR3 1600 Memory

4 1 www.evga.com 01G-P3-1280 $335. GTX280 240-core GPU

5 1 www.enermax.com EMD625AWT $160. 625W MODU82+ Power Supply

6 1 www.westerndigital.com WD10EADS $105 1TB SATA Disk Drive

7 1 www.antec.com P182 $120. ATX Mid Tower Computer Case

8 1 www.xilinx.com HW-V5-ML555-G $2200. Xilinx ML555 V5 Dev Kit
Notes:

 Cost estimated, quantity one, as observed online Q1-2009

All components in the table above, except for the ML555, are available from computer
component retailers including www.newegg.com. The rationale for the selection of line items 1-
7 was to satisfy the requirement of identifying one known and stable “x58-based Corei7 PC with
12GB RAM, strong GPU and reliable 625W power supply”. Deviating from these specific
selections should not significantly alter the system behavior. For example, replacing the GTX280
GPU (cutting-edge “strong” in Q1-2009) with a different GPU should not change the behavior of
OpenCPI applications.

The Xilinx ML555 Development Kit is available from www.avnet.com and
www.nuhorizons.com . This development kit includes the “Platform USB /JTAG programming
cable”. Not included with this kit are the optional 1000BASE-T SFP Transceivers (Finisar
FCMJ-8521-3) from Avnet for $80. One or two are required for direct-to-FPGA GBE
connectivity.

Additionally, not included in this table were components which may vary based on the
user’s specific requirements. These include the CPU heat sink assembly, CD/DVD drive,
keyboard, mouse, monitor and peripheral hardware that will be needed to complete the system.

mailto:Shepard.Siegel@atomicrules.com
http://www.evga.com
http://www.intel.com
http://www.corsair.com
http://www.evga.com
http://www.enermax.com
http://www.westerndigital.com
http://www.antec.com
http://www.xilinx.com
http://www.newegg.com
http://www.avnet.com
http://www.nuhorizons.com

 43

An open-frame computer case may be used as an alternative to the enclosed case
specified in line item 7 when frequent access to board hardware is desired, or where there may be
mechanical interference from other PCIe add-in cards with a taller profile. For example, PCIe
cards with top-mounted FMC/VITA-57 connectors, such as the Xilinx ML605, will protrude in
the vertical dimension such that the case side panel may not be fitted. One such open-frame case
alternative offering is the “HSPC Top Deck Tech Station (standard size)” from
www.highspeedpc.com for about $90.

Development and Target Computer, Software Components
Note: The information below is the latest available pricing, but can be expected to change

prior to document release. Xilinx ISE 11.1 is presently in Beta L.31. It is anticipated that Beta
L.33 or greater will be available for the production release.

Table D2: FPGA Reference Platform, Software Components

Line Manufacturer Part Number Cost Description

1 www.ubuntu.com 8.10-desktop-amd64 Free Ubuntu 8.10 “Intrepid Ibex” 64-bit

2 www.xilinx.com TBD $2995. Xilinx ISE 11.1 Logic Edition,
Node-Locked

http://www.highspeedpc.com
http://www.ubuntu.com
http://www.xilinx.com

